

The transmission-distribution interface in 2030: Two conceptual bookends

Lorenzo Kristov, Ph.D.
Principal, Market & Infrastructure Policy

CEC IEPR Workshop, August 19, 2013

Outline of presentation

- The forces of change
- Two concepts of the future T-D interface
- Other elements of a 2030 power system vision
- Some policy considerations

The forces of change

- Policies to reduce environmental impacts of energy
- Diverse, rapidly emerging technologies
 - Inexpensive solar PV; electric vehicles; storage; micro-grid systems; automation; small-scale & "community" resources
- Customer desires for greater choice and control
 - Dynamic automated demand response
 - Desire for local resilience to disturbances

Possible 2030 implications:

- Increasing local production of end-use kWh
- Proliferation of micro-grids with islanding capability

Why envision possible future T-D interface?

- Change is inevitable better to be proactive than purely reactive
- Consider near-term policy issues from a whole-system perspective, rather than piecemeal
- Proliferation of distributed energy resources requires explicit focus on T-D interface
- Consider possible entry of new types of participants, with new roles and responsibilities
- Possibility of anticipating needed innovations and starting now to develop them (Resnick 2012)

The two conceptual bookends

- Bookends are expressed as "pure" or extreme models in order to clarify the differences
 - Neither one is necessarily preferred at this time
 - But both are plausible futures, so it is prudent to anticipate how they might work in practice
 - Not mutually exclusive; instances of both could co-exist for many years
 - Bookends represent conceptual "end states" without yet considering possible transition paths to these states
- Bookend A: T+D comprise a fully integrated system, with one system operator that performs scheduling, real-time balancing, integrated markets, etc., and traditional T-D boundary is eroded for purposes of markets and operations.
- Bookend B: T and D are separate systems that meet at well-defined T-D interface points (e.g., PNodes), with a transmission system operator for the transmission grid and wholesale markets, and separate entities operating & balancing the distribution systems.

Comparing the two bookends

Bookend A	Bookend B
 ISO schedules and dispatches integrated T+D system to maintain real-time balance & reliability ISO has visibility & dispatches distributed resources above a low size threshold (e.g., 50 or 100 kV) 	 ISO operates transmission grid only (i.e., up to the PNode) Distribution system operator (DSO) operates distribution system below each PNode PNode is similar to an intertie DSO is similar to a micro-grid
ISO provides real-time services (balancing, load following, frequency, etc.) for distributed resources as well as grid-connected resources	 ISO provides real-time services for grid-connected resources DSO provides RT services for distributed resources DSO at each PNode is a resource from ISO perspective

Other elements of the 2030 power system

- Greater coordination & integration across the western interconnection
 - Real-time imbalance markets in different areas that together include most of the western region
 - Day-ahead coordinated scheduling & congestion management largely eliminate unscheduled flows
- Greater efficiency in use of west-wide grid may offer potential to optimize access to renewable-rich areas without massive infrastructure investment

Some policy considerations

- Policy makers can influence but not fully control the ultimate trajectory of industry evolution
- Is there a "least regrets" approach for near-term policy issues that allows the optimal future structure to be realized?

